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Wave chaos in the elastic disk

Niels Sondergaard* and Gregor Tanner†

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
~Received 6 August 2002; published 19 December 2002!

The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray
dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries
and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave
mixing between the shear and pressure component of the wave field at the boundary leads to an effective
stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for
example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed
into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-
frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are
discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-
outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier
transforming the spectral density.
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I. INTRODUCTION

In the beginning of the 20th century, Debye studied
density of vibrational modes in a solid body in the context
his work on the heat capacity. He found that the aver
density is, in leading order, proportional to the volume of t
body times the third power of the frequency. Corrections
Debye’s result were found later, involving contributions d
to the surface of the body@1,2#. The density of eigenfrequen
cies of a solid body contains apart form these smooth te
also oscillatory contributions, which build up the discre
spectrum of individual eigenmodes. These oscillatory corr
tions have been studied intensively over the last decade o
in the context of the Helmholtz and the Schro¨dinger equa-
tions. In the high-frequency limit they are known to be r
lated to periodic orbits of an underlying classical dynami
that is, the ray dynamics in a billiard in the former or th
Hamiltonian dynamics of the corresponding classical sys
in the latter case@3,4#. It was, in particular, observed tha
different formulas apply when the classical dynamics is
tegrable@5# or chaotic@6#. The relation between the wav
equation and a related deterministic ray dynamics is less
vious in elasticity. The wave equations are vectorial and
ferent wave modes with differing wave velocities coexi
The notion of chaos or integrability needs to be reexami
here, which is the main purpose of this paper.

In what follows, we shall assume that the elastic bo
consists of an isotropic material. To reduce the dimensio
ity of the problem, we will furthermore consider only bodie
of the form of a thin plate or an infinite rod with consta
cross section. The vibrations in the plate or rod decou
then into two classes, the in-plane and the antiplane vib
tions @7# ~for plates, this is only true as long as the wav
length is much smaller than the thickness of the plate!. The
problem is thus reduced to two spatial dimensions. We w
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focus here on the in-plane vibrations for which the wa
equation is still vectorial, which makes it more comple
than, say, the scalar Helmholtz equation. The wave field
be decomposed into two polarizations, that is, pressure
shear waves, which have different wave speeds. The
polarizations couple at the boundary for physically relev
boundary conditions. An underlying ray dynamics emerg
at high frequencies has similarly two types of rays travel
at different speeds and conversion between polarizat
takes place at the boundary. Ray conversion introduce
stochastic component into the dynamics and may lead
large increase of possible ray trajectories compared to de
ministic billiards for the same domain shapes@8#.

We shall discuss mainly the case of a circular disk here
separable problem due to the spherical symmetry. The c
of elastic bodies without symmetries and fully chaotic cla
sical ray dynamics has been discussed in Ref.@9# including a
comparison with the semiclassical quantization of chao
systems@3#. The scattering from two circular cavities in a
elastic medium has been treated in Ref.@10#. The common
idea is to write the spectral density as the trace of the Gre
function which can, in turn, be expressed as sum over c
sical periodic orbits. We shall derive such a trace formula
the elastic disk and compare the results with the numeric
calculated spectrum. We will furthermore show that the wa
equation as well as the classical ray dynamics still posse
degree of ‘‘randomness’’ due to the wave mixing at t
boundary, even though angular momentum is conserved

The quantum spectra of systems whose classical dyn
ics is chaotic has been found to follow random matrix theo
~RMT! originally developed in nuclear physics, see, for e
ample, Refs.@11,12#. In the elastic case, spectral statisti
coinciding with RMT has been observed in experiments
monocrystalline quartz blocks and three-dimensional S
billiards @13#, as well as, in experimental and numerical stu
ies of flexural modes@14,15# and in-plane modes@16,17# for
stadium-shaped plates. Recent experimental results u
fused quartz plates reveal that even seemingly regular ge
etries such as rectangular plates lead to spectral stati
©2002 The American Physical Society11-1
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N. SONDERGAARD AND G. TANNER PHYSICAL REVIEW E66, 066211 ~2002!
following RMT for in-plane modes@18#. This is attributed
here to the mode mixing between pressure and shear w
at the boundary which breaks the continuous symmetry
the underlying classical ray dynamics. The elastic wa
equation is indeed nonseparable for rectangular bounda

Recently, spectra of graphs have also been shown to
have quite similar to chaotic systems@19,20#; they possess a
trace formula for the spectral density and show random
trix statistics. We will make a connection between the r
dynamics in an elastic disk and the dynamics on a sim
Markov graph, and will show how mode conversion affe
the correlations in the eigenfrequency spectrum of the d

The paper is organized as follows. We shall first introdu
the elastic wave equation and a high-frequency approxi
tion of its boundary element kernel in Sec. II. Next, the cla
sical ray dynamics in a disk is discussed in Sec. III. In S
IV, the exact solution of the wave equation for circular sy
metries is derived and high-frequency approximations
diskussed. We will then study the so-called nearest neigh
spacing distribution for the disk spectrum in more detail.
expression for the oscillatory part of the level density
terms of periodic orbits will be derived from the scatteri
matrix in Sec. V.

II. THE ELASTIC WAVE EQUATION AND SHORT
WAVELENGTH APPROXIMATIONS

We shall consider the propagation of elastic deformati
through an isotropic body. The partial differential equation
the frequency domain is the linear Navier-Cauchy equa
@7,21#,

mD~u!1~l1m!“~“•u!1rv2u50, ~1!

whereu(x) is the displacement field in the body,l,m are the
material dependent Lame´ coefficients, andr is the density.
We shall restrict ourselves to two-dimensional problems
what follows. A generalization of the results in this section
three dimensions is, however, straightforward. The tw
dimensional wave equation describes in-plane deformat
in plates or wave propagation in cylindrical bodies extend
to infinity along one axis.

Introducing elastic potentialsF andC by using standard
Helmholtz decomposition of the displacement fieldu, that is,

u5up1us with up5¹F, us5“3C, ~2!

the Navier-Cauchy equation reduces to two Helmholtz eq
tions for the potentials

~D1kp
2!F50, ~D1ks

2!C50. ~3!

Here,kp and ks are the wave numbers for the pressure~or
longitudinal! and shear~or transversal! wave component, re
spectively. The wave velocities relating the wave number
the frequencyv via the dispersion relationkp,s5v/cp,s are
different for the two different polarizations, one obtains

cp5Al12m

r
, cs5Am

r
.
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Note that the pressure wave speed is always larger than
shear wave velocity. It is this difference in wave speed wh
leads to the phenomenon of wave splitting in the ray dyna
ics on impact with a boundary, see Fig. 1. The two wa
equations~3! couple at the boundary, the details of the co
pling depend on the boundary conditions. We shall, in
following, always consider free boundaries, that is, no forc
act on the surface of the body. Forces acting on general
face elements are described in terms of the stress tenso

s i j 5l ]kukd i j 1m~] iuj1] jui !,

where the summation convention is used. Free bound
conditions correspond to

t~u!5s~u!•n50 ~4!

for the displacement field at the boundary, wheren denotes
the normal to the boundary. The operatort refers to the trac-
tion. The traction operator~or traction matrix after represent
ing it in a particular basis! for a circular boundary will be
needed later to calculate the eigenfrequency spectrum o
elastic disk, and is explicitly derived in Appendix A.

Waves propagate freely inside the medium, that is,
pressure and shear components are decoupled and t
along straight lines. Wave splitting occurs at the bound
according to Snell’s law,

cp

cs
5

sinup

sinus
, ~5!

whereup andus denote the angle of incident or reflection
the pressure and shear wave, respectively, measured wit
spect to the normal to the surface, see Fig. 1. No mode c
version takes place fors waves coming in at incident angle
larger than a critical angleuc5arcsin(cs/cp). The reflection
coefficients at impact with a plane interface for free boun
ary conditions can be given in terms of an orthogonal 232
coefficient matrixa @9#,

app5
sin 2us sin 2up2k2 cos2 2us

sin 2us sin 2up1k2 cos2 2us

, ~6!

ass5app ,

aps52asp and app
2 1aps

2 51,

where app8 relates an incoming wave of polarizationp
P$s,p% to an outgoing wave of polarizationp8 and k

FIG. 1. Wave splitting for in-plane waves at the boundary.
1-2
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WAVE CHAOS IN THE ELASTIC DISK PHYSICAL REVIEW E66, 066211 ~2002!
5cp /cs. In the literature, often only the reflection coefficien
for the displacement fieldu are given@7# related to the co-
efficient matrixa above by

app85A cp cosup

cp8 cosup8

app8 . ~7!

Here, uapp8u
2 is equivalent to the proportion of the energ

density of the wave function undergoing transition fromp8
→p, whereasuapp8u

2 is the ratio of the corresponding en
ergy fluxes normal to the boundary~with normal velocity
cp cosup). The unitarity ofa thus implies flux conservation
normal to the boundary. The tangential energy flux is, ho
ever, not conserved for free boundary conditions due to
nonvanishing tangential stresss tt giving rise to surface
waves~whereassnn5snt5s tn50 at the boundary! @22,23#.

We are interested here in solutions of the wave equat
~1! in bounded domains in two dimensions. The set of eig
in
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frequencies is discrete and the solutions depend on the s
of the domain and on the boundary conditions. The wa
equation is nonseparable for typical domain shapes and
merical schemes, as, for example, boundary element m
ods~BEM’s!, have to be employed to calculate the eigenf
quencies and corresponding wave functions. The BEM
typically less straightforward in the elastodynamical ca
compared to applying it to the scalar Helmholtz equatio
The integral kernels become hypersingular for comm
boundary conditions as, for example, free boundaries and
displacement field is vectorial. Standard techniques to ap
BEM to the Navier-Cauchy equation are described in R
@24#.

A relatively simple expression for the boundary integ
kernels can, however, be obtained when considering
high-frequency limit. A generalization of Bogomolny’s tran
fer operator method@25#, derived originally for the Helm-
holtz equation in bounded domains, yields in two dimensio
a boundary kernel in the form of a 232 matrix, that is,
T~q,q8;v!5A v

2p i
AU ]2L

]q]q8
US app aps

asp ass
D SA 1

cp
eikpL(q,q8)2 inp(p/2) 0

0 A1

cs
eiksL(q,q8)2 ins(p/2)D , ~8!
to
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whereq, q8 denote points on the boundary of the doma
L(q, q8) is the distance betweenq and q8 in the two-
dimensional (x,y) plane and the reflection coefficients a
defined in Eq.~6!. The additional phasesnp,s are Maslov
indices that count the number of caustics along the path
each polarization@3#. Approximations to the eigenfrequen
cies are then obtained by solving

det@12T~v!#50. ~9!

The transfer operator~8! can be viewed as a discrete wa
propagator acting on boundary wave functions by mapp
outgoing two-component wave vectors at a pointq on the
boundary into outgoing wave vectors atq8. Wave mixing at
the boundary enters through the matrixa(q). Snell’s law~5!
is obtained by considering the two-step operator,

T2~q,q9;v!5 R dq8T~q,q8;v!T~q8,q9;v!

in stationary phase approximation. Consideringn step opera-
tors Tn, one can derive periodic orbit trace formulas as p
sented in Ref.@9#, see also Sec. V.

The transfer operator is in many respects a fairly cru
approximation of the true BEM. It is the leading order ter
in a 1/v expansions of the exact boundary integral ker
and does, in particular, not contain evanescent contributi
It can therefore not reproduce boundary effects such as
face waves as well as diffraction or higher-order mode m
.
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ing corrections. It is, however, a natural starting point
investigate the connection between the wave dynamics
elastic media of finite size and an underlying ray dynam
that includes ray splitting.

In the following, we shall study the billiard with probabl
the most simple geometry, namely, an elastic disk. Ev
though the wave equation is separable for this particu
shape, there is some degree of wave chaos in this sys
which can be traced back to chaotic components of an
derlying ray dynamics.

III. CLASSICAL RAY DYNAMICS FOR CIRCULAR
DOMAINS

In this section, we shall discuss in more detail the r
dynamics in isotropic media of general shape and, in part
lar, for two-dimensional circular domains.

We will adopt the following convention for a ray trajec
tory in an elastic isotropic medium: a trajectory is at a
instant in time given by its position and momentum as w
as its polarization being either ofp or s type. We may iden-
tify the wave numberskp5v/cp , pP$p,s% as the momenta
of polarizationp with ks5kkp . A ray travels along straigh
lines between impacts with the boundary. At the boundary
stays in a given polarization or undergoes mode convers
with probability

tpp5tss5uappu2, tps5tsp5uapsu2, ~10!
1-3
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N. SONDERGAARD AND G. TANNER PHYSICAL REVIEW E66, 066211 ~2002!
where the reflection coefficients are given in Eq.~6!. The
angle of reflection depends on whether mode convers
takes place or not via Snell’s law and so does the mom
tum. A trajectory is uniquely determined after fixing its in
tial position and momentum and an infinite sequence
polarizations p1 ,p2 , . . . ,p i , . . . P$s,p% reflecting the
probabilistic nature of the dynamics. The dynamics in
elastic isotropic medium is thus taking place on two differe
energy sheets with energiesEp5kp

2 and Es5ks
2 with Ep

,Es . The dynamics on each sheet is deterministic, jum
from one sheet to the other may occur at the boundaries

We shall now turn to the dynamics in a circular disk wi
radiusa. The angular momentumL is conserved at impac
with a boundary both for rays staying in a given polarizati
and those undergoing mode conversion which follows
rectly from Eq.~5!, that is,

L5zp sinup5zs sinus5const, ~11!

where we setzp5akp and zs5aks . The maximal angular
momentum possible for a fixed frequencyv is uLmaxu5zs; no
wave splitting occurs forzp<uLu<zs . The dynamics in a
disk follows a simple scaling relation and can be charac
ized in terms of the dimensionless impact parametersbp

5L/zp with bp5kbs . The mode splitting regime is charac
terized byubpu,1; pures rays exist for 1,ubpu,k. A tra-
jectory takes on at most two different angles of reflectionup
andus with sinup5bp .

In the language of dynamical systems theory, one may
that the dynamics on each energy sheet is integrable, tha
trajectories for fixedL and a given polarization are confine
to a two-dimensional manifold in phase space with the top
ogy of a torus. Mode conversion couples two specific t
characterized by (Ep ,L) and (Es ,L) and transitions are pos
sible between these two tori only, see Fig. 2~a!. The total
dynamics is thus not ergodic.

For ubpu,1, the same initial condition in phase spa
does, however, lead to an exponentially increasing numbe
possible solutions due to the transitions between the en
sheets. This leads, for example, to an exponential increas
the number of periodic ray trajectories with increasi
length, a phenomenon usually associated with class
chaos. The latter follows directly from the periodic orbit co
dition

FIG. 2. ~a! Radial dynamics in the disk takes place on tw
energy sheetsEp5kp

2 andEs5ks
25k2Ep ; transitions take place a

the boundaryr 5a. ~b! The boundary map is equivalent to th
probabilistic dynamics of a Markov process on a binary graph.
06621
n
n-

f

n
t

s

i-

r-

ay
is,

l-
i

of
gy
in

al

npDwp1nsDws52pm, np1ns5n>2m. ~12!

Here, Dwp is the change in the azimuthal angle for a r
with polarizationp between two reflections. The azimuth
angle and the angle of incidence are related through the
lation Dwp5p22up . The integer indicesnp correspond to
the number of ray segments with polarizationp andm is the
number of rotations around the center. The numberN(n) of
periodic orbits withn reflections~including permutations of
the polarizations! increases thus exponentially like

N~n!;
n

2
2n.

The fact that these orbits~apart from them50 case! all form
continuous families is, however, a feature known from in
grable dynamics.

The dynamics becomes particularly simple when we
strict our considerations to the motion in the radial coor
nate only. The dynamics inr is one dimensional in each she
and bound away from the center due to the centrifugal
tential L2/2r 2, see Fig. 2~a!. Transitions between the shee
occur at the boundaryr 5a for ubpu,1. The boundary map
for the radial dynamics for fixedbp is thus a simple stochas
tic process that may be described in terms of a graph w
two loops of the form shown in Fig. 2~b!. The transition rates
~10!, which again depend only on the parametersbp andk,
define a Markov process on this graph with topological e
tropy ht5 ln 2 and exponential decay of correlation fortpp
Þ0 or 1. The chaotic component of the dynamics in t
elastic disk is thus a two-level stochastic process.

IV. THE ELASTIC DISK: EXACT RESULTS
AND THE HIGH-FREQUENCY LIMIT

The wave equation for a disk of radiusa is separable
independent of the boundary conditions. We will briefly d
cuss the exact solutions in the case of free boundaries
make a connection between the eigenfrequencies of the
rior problem and the spectrum of the scattering matrix for
corresponding exterior problem. Details are given in the A
pendixes A and B. It will, in particular, be shown that th
scattering matrix is equivalent to the transfer operator~8! in
the high-frequency limit.

A. The scattering matrix

The elastic wave equation can, for circular domains
two dimensions, be solved in terms of the basis function

c l~r ,w!5Jl~kpr !eil w, ~13!

whereJl(kpr ) is the l th order Bessel function withp5p or
s andw is the azimuthal angle. The separability of the wa
equation reflects the conservation of angular momentum
the classical ray dynamics; we obtain, as usual, that the
gular momentum takes on only integer valuesl.

Applying free boundary conditions to a displaceme
wave vector obtained from the potentials~13! for fixed l
leads to the secular equation, see Appendix A,
1-4



det~ t l !~v!50, ~14! where the traction matrixt is given as
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t l5S S l 22
1

2
zs

2D Jl~zp!2zpJl8~zp! i l @Jl~zp!2zpJl
8~zp!#

i l @Jl~zs!2zsJl
8~zs!# zsJl8~zs!2S l 22

1

2
zs

2D Jl~zs!
D ~15!
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andzp5kpa. The condition~14! can be rewritten in terms o
the scattering matrix for the outside problem, that is,
in-plane wave scattering in an infinite plate with a circu
hole. This connection is known as the inside-outside dua
@26# between eigensolutions of the interior problem a
transparent scattering solutions. The scattering matrix
fixed angular momentuml is given as@22#

Sl52t l
2
•~ t l

1!21, ~16!

see also Appendix B, wheret l
1,t l

2 are obtained from the
traction matrix~15! by replacing the Bessel function and i
derivatives by incoming and outgoing Hankel functions. U
ing Jl(z)5@Hl

(1)(z)1Hl
(2)(z)#/2, which implies the same

identity for the corresponding traction matrices, that is,

t l5
1

2
~ t l

11t l
2!, ~17!

the eigenfrequency condition~14! can be written as

05det~ t l !5
1

4
det~ t l

1!det@11t l
2
•~ t l

1!21#

[
1

4
det~ t l

1!det~12Sl !. ~18!

The zeros of the first factor in Eq.~18! are related to the
resonances for exterior scattering at a circular cavity and
all in the lower complexz plane. An eigenfrequency for th
interior problem of the disk implies that the scattering mat
at the same frequency has an eigenvalue 1. That is, a
tering solution exists for which the obstacle, here the disk
transparent. This principle holds for general shapes@26#.

B. The scattering matrix in the high-frequency limit

In the following, we shall derive an approximation to th
scattering matrix in the high-frequency limit.

The mode conversion regimezbpzË1

In the energy–angular momentum regime for which
impact parameterubpu5uLu/zp,1, the Hankel functions en
tering t6 may be split in terms of phases and amplitud
using the oscillatory Debye approximation; one obtains
leading order~Appendix B!,
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Sl'S e2 ifp 0

0 e2 ifs
D al S e2 ifp 0

0 e2 ifs
D ~19!

with

fp5zp@A12bp
2 2bp arccos~bp!#2

p

4
~20!

andal is the unitary matrix of reflection coefficients define
in Eq. ~6! with angles of incidence fixed by the angular m
mentum condition~11! with L5 l . We thus obtain for transi-
tions between polarizationsp,p8,

Sl~p→p8!'app8e
2 i (fp1fp8). ~21!

Note that the unitarity of theS matrix is preserved in this
approximation. This is not true, in general, for short wav
length approximations and results here from the quasi-o
dimensionality of the dynamics.

Regime of no mode conversion 1ËzbpzËk

For angular momenta corresponding to incident ang
larger than the critical angle orubpu.1, a somewhat differ-
ent treatment needs to be employed. Here the expone
Debye expansion must be used for the pressure wave lea
to anS matrix of the form

Sl'S 1 0

0 asse
22ifs

D ~22!

with a reflection coefficient~in agreement with the plane
interface result!

ass52
Zl*

Zl
~23!

and

Zl511cos 4us1 i8 cosus sin2usAsin2us21/k2. ~24!

Here, the boundary conditions lead to a pure phase shift
pendent on the angle of incidence. There is no attenua
associated with this reflection, contrary to the wave splitt
case. The phase shift is due to a coupling to a surface lo
tudinal wave@21#.
1-5
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The transfer matrix for zbpzË1

By parametrizing the boundary in terms of the azimut
anglew, one obtains for the transfer operator~8! in a circular
domain,

T~w,w8;v!5A v

2p i
Aa

2
sin

Dw

2
a~Dw!

3SA 1

cp
eikpd 0

0 A1

cs
eiksd

D , ~25!

where Dw5uw2w8u and d is the distance between tw
pointsw,w8 on the boundary, that is,

d~w,w8!52a sin
Dw

2
.

The transfer operator depends only on the differenceDw and
block diagonalizes with respect to the Fourier basisu l &
5exp(ilw)/A2p for integer l. One obtains, after evaluatin
the second integral by stationary phase,

^ l uTu l 8&5d l l 8al S e2ifp 0

0 e2ifs
D , ~26!

where the phases

fp5
1

2
kpd~Dwp!2 l

Dwp

2
2

1

4
p ~27!

are taken at the stationary phase point

akp cos
Dwp

2
5akp sinup5 l , ~28!

which is the angular momentum condition~11!. The phases
fp in Eq. ~27! coincide with Eq.~20! after inserting the
stationary phase conditionDwp /25arccosbp , Eq.~28!. The
S matrix in the approximation~19! is thus equivalent to the
Hermitian conjugate of theT matrix up to a simple transfor
mation in terms of a unitary diagonal matrix. In particula
the eigenfrequency conditions det(12T)'det(12S)50 co-
incide in the high-frequency limit.

The mean density of eigenfrequencies for fixed l

The mean density of eigenfrequenciesd̄l for fixed l can be
obtained from the scattering matrixSl @26#, that is,

d̄l~kp!5
1

2p i

d

dkp
ln det~Sl

†!.

Inserting the high-frequency limit of theS matrix ~19! for
ubpu,1 one obtains to leading order,
06621
l
d̄l~kp!5

1

p

d

dkp
~fp1fs!5

a

p
~A12bp

21kA12bs
2!.

~29!

Note that the mean level density depends onkp and l only
via the impact parametersbp . Equivalently, we obtain from
Eq. ~22!, for 1,ubpu,k,

d̄l~kp!5
1

p

d

dkp
fs5

a

p
kA12bs

2. ~30!

C. Statistical properties of the eigenspectrum

We saw in the preceding section that a transition ta
place atubpu5uLu/kpa51 between a pure shear wave regim
with ubpu.1 and a mode mixing regime withubpu,1. This
transition is reflected in the ray dynamics, see Sec.
Whereas only one family of~shear! trajectories exists for
fixed bp with ubpu.1, there are infinitely many such familie
for ubpu,1 and their number increases exponentially w
the length of the trajectories. Such a phenomenon is remi
cent to the behavior typically found for chaotic classical d
namics. It was observed in Sec. III that the dynamics in
mode mixing regime can indeed be described by a stocha
Markov process on a two-loop graph, see Fig. 2~b!. In the
limit bp→0, however, the transition ratestpp5tss approach
one and the two modes decouple again leaving only
possible ray trajectories.

All these regimes should manifest themselves also in
spectrum of the elastic disk. Spectral correlations are kno
to be particularly sensitive to the degree of chaos presen
an underlying classical~ray! dynamics@11,12#. A popular
statistical measure is the so-called nearest neighbor spa
distributionP(s) giving the probability of finding two adja-
cent eigenvalues of the spectrum~unfolded to mean leve
separation one! a distances apart.P(s) follows a Poisson
distribution for completely uncorrelated spectra, but has b
conjectured to coincide with the results obtained for e
sembles of random Hermitian matrices for completely c
otic dynamics.

In Fig. 3, the spectrum obtained from the exact eigenf
quency condition~15! for an aluminum disk withk52.05 is
shown. Here, the wave numberzp5akp of an eigenvalue
with angular momentuml is plotted. One notices a differenc
in the mean density of eigenvalues for fixedl above and
below the diagonalubpu5u l u/zp51, see Eqs.~29! and ~30!.
The lowest eigenfrequency in eachl series can be attribute
to a surface~or Rayleigh! wave. Mode mixing occurs for
ubpu,1 or akp.L.

First we look atP(s) for the total spectrum which is
obtained by projecting the differentl eigenfrequency serie
in Fig. 3 onto thezp axis. One finds indeed good agreeme
with Poisson statistics as shown in Fig. 4~a!. This reflects the
fact that the ray dynamics in the elastic disk is not ergo
but restricted to manifolds with fixed angular momentumL
which have the form of a single torus forubpu.1 or two
coupled tori forubpu,1. The eigenfrequencies for differentl
series are thus uncorrelated, which leads to vanishing co
lations in the full spectrum for largezp after projection onto
the zp axis.

In order to see the influence of wave mixing on the sp
trum, we need to study spectral correlations within a givel

series. Indeed, the wave dynamics for fixedl is given by the
1-6
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232 transfer matrix Eq.~26! @or the equivalent matrix for
ubpu.1 obtained from Eq.~22!# being of the form

T l~zp!5al~bp!S eizpf̃p(bp) 0

0 eizpf̃s(bp)D . ~31!

The transfer matrixT l consisting of a unitary transition ma
trix a times a diagonal matrix is typical for propagation o
quantum graphs as studied in Refs.@19,20#. The phases in
the diagonal matrixf̃p ,f̃p are thereby interpreted as th
lengths of the bonds in the graph, here the two loops in F
2~b!. As we changezp , we expect the correlations within
given l series to change according to the degree of w
mixing possible, that is, to the degree, thattpp deviates from
0 or 1. Note that the transition amplitudetps allowing for
transitions betweenp and s waves goes to zero both in th
limit bp→0 and bp→1, see Eq.~6!; the wave modes de
couple in these limits. We expect, furthermore, that corre
tions are locally the same for differentl series withbp fixed,
that is, along straight lines in Fig. 4 withbp5const. We
therefore study the nearest neighbor spacing distribu
P(s) for eigenfrequencies lying in a window given by th
intersection of the conebp6Dbp and the lineL5 l 5const;
the observed distributionsP(s,bp) are indeed independent o
l and we may averageP(s,bp) over differentl series.

The result is shown in Fig. 4~b! for three different values
of bp andDbp50.01. In addition, the value oftpp as a func-
tion of bp is given; maximal mixing corresponds totpp
50.5. The distributions are neither similar to the Poiss
distribution, nor to any of the random matrix distribution
This nonuniversal behavior is typical of graphs with only

FIG. 3. The eigenspectrum of the disk for aluminum withk
52.05; the wave numberzp5akp of an eigenfrequency is plotte
versus the angular momentuml. Eigenfrequencies withakp, l ~or
ubpu.1) are pure shear states, mode mixing occurs forakp. l . The
lowest states in eachl series are due to surface waves~Rayleigh
waves!.
06621
.

e
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n

few bonds@27#. One notices, however, that a gap is openi
up in P(s) for smalls asbp increases from zero. This can b
interpreted as level repulsion due to mode mixing which
creases astpp deviates from 1. Forbp→1 a different effect
sets in; the pressure mode is suppressed and we witnes
transition form a two mode to a one mode wave dynam
with equidistant eigenfrequencies.

V. EIGENFREQUENCY DENSITY AND A PERIODIC
ORBIT TRACE FORMULA

So far, we have shown that the traction matrix as well
the scattering and transfer matrices can be brought into b
diagonal form where each 232 block produces the spectrum
for fixed angular momentuml. In this section, we will make
an explicit connection between the full spectrum and pe
odic trajectories in the elastic disk by looking at the to
spectral density

d~v!5(
i

d~v2v i !,

where the sum runs over all eigenfrequencies~in terms of the
angular velocityv) of the disk.

The spectral density can quite generally be written
terms of a smooth part and oscillatory contributions, the
ter containing the period orbit contributions, that is,

d~v!5dsmooth~v!1dosc~v!.

The smooth part gives the mean density of states wh
may be obtained using

dsmooth~v!5
dNsmooth

dv
,

whereNsmoothis the mean part of the spectral counting fun
tion N(v) giving the number of levels belowv. General
results for the smooth part of the counting function of is
tropic elastic media with free boundary conditions can
given @1,2#, that is,

Nsmooth~v!'
cp

221cs
22

4p
Sv21

b

4pcs
Lv1o~v! ~32!

with

b54h231
1

k
1

4I

p
,

and

I 5E
1/k

1

arctan
~221/j2!2

4AS 12
1

k2j2D S 1

j2
21D

dj.

Here S,L are the surface area and the perimeter of the
main and finallyh5cR /cs with cR the Rayleigh wave veloc-
ity @7#. The leading term corresponds to the available ph
space volume, whereas the next order term contains cor
1-7
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FIG. 4. Statistical properties o
the eigenspectrum for aluminum
with k52.05. ~a! the nearest
neighbor spacing distribution
~NNS! for all levels;~b! NNS dis-
tributions for fixed impact param-
eterbp together with the transition
probabilities tpp as a function of
bp . The NNS is obtained for
stretches of eigenvalues lying in
range bp6Dbp for angular mo-
menta froml 5300–3000.
o

n
o

in

ay

nd
tions due to surface states. In contrast to the scalar Helmh
equation for which the expansion ofNsmoothcan be worked
out to arbitrary order, in principle@28#, only the first two
terms are known in elastodynamics at present.

The fluctuating part of the density of states which co
tains all the information about individual eigenfrequencies
the interior problem can be written in terms of the scatter
matrix of the outside problem@26,29#. One obtains

dosc~v!5
1

p
Im(

n51

`
1

n

d

dv
Tr@Sn~v!#†. ~33!

In the high-frequency limit this term is related to periodic r
trajectories in the disk as will be shown below.
06621
ltz

-
f
g

A. Oscillatory part of the density of eigenfrequencies

We will first derive a periodic orbit expression for TrSn in
the high-frequency limitv@1 using the block-diagonal form
of the scattering matrix and the approximation~19!, that is,

TrSn~v!5 (
u l u< l max

TrSl
n' (

u l u< l max
(
pn

Apn
e2 i2(npfp1nsfs).

~34!

Here,l max;zs denotes the maximal angular momentum a
the second sum runs over all binary symbol stringspn
5p1p2 , . . . ,pn of lengthn with p iP$p,s%. The amplitude
Apn

is obtained as product over reflection coefficients~6!,
that is,
1-8
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Apn
5)

i 51

n

ap ip i 11
,

fp are the phases defined in Eq.~20! andnp , ns equal the
number of times the symbolp, s appears inpn . The sum
over binary symbol strings for fixedl is equivalent to a sum
over all periodic paths in the binary graph Fig. 2. Note th
the reflection coefficients as well as the phasesFp depend
explicitly on l andv.

Next, we use Poisson summation to write the sum ovl
as

TrSn'(
pn

(
u l u< l max

Apn
e22i (npfp1nsfs)

5(
pn

(
m52`

` E
2 l max

l max
dlApn

e22 i (npfp1nsfs)22p i ml.

~35!

Evaluating the integrals by stationary phase using

dfp

dl
52arccos~ l /zp!52

Dwp

2
, ~36!

whereDwp is the angle spanned by a ray segment with
larizationp between two reflections, we obtain the stationa
phase condition

Dw total5npDwp1nsDws52pm. ~37!

This is precisely the periodic orbit condition~12!, that is,

only those angular momental * 5zp cos1
2Dw contribute sig-

nificantly, for which a periodic orbit exists at frequencyv.
The second derivative of the phases in Eq.~35! is

2
d~Dw total22pm!

dl
52S np

zp cosup
1

ns

zs cosus
D ~38!

with up , the angle of incident and cosup5sin1
2Dwp .

After evaluating the phasesFp in Eq. ~35! at the station-
ary phase pointl * , one obtains for the total phase

2~npFp1nsFs!12p l * m5npkpdp1nsksds2n
p

2

5vT2n
p

2
, ~39!

with n5np1ns anddp52a sin 1
2Dw, the length of a ray seg

ment of polarizationp between reflections. Furthermore,T is
the period of the periodic orbit. We finally obtain

TrSn'Apav (
po

(n)

Apoe
2 ivTpo1 inp/22 ip/4, ~40!

where the sum is taken over all periodic rays withn reflec-
tions and
06621
t

-
y

Apo5
Apo

A npcp

cosup
po

1
nscs

cosus
po

.

By taking the complex conjugate and the derivative w
respect tov of Eq. ~40!, we finally obtain the spectral den
sity to leading order in 1/v as

d~v!'Aav

p
(
n51

` 1

n
(
po

(n)

ApoTpo cos~vTpo2np/21p/4!

5Aav

p
(
ppo

Tppo

A npcp

cosup
po

1
nscs

cosus
po

(
r 51

` A ppo
r

r 3/2

3cos@r ~vTppo2nppop/2!1p/4#. ~41!

The last expression is obtained after summing over or
related by cyclic permutations of the symbol codep and the
sum is now taken over all primitive periodic orbits~ppo! of
arbitrary length, that is, over orbits not including repetitio
and cyclic permutations. The second sum overr then in-
cludes the repetitions.

We note in passing that the result~41! can also be derived
from a generalization of theAbelian trace formula@30,31#
valid for systems with continuous symmetries. Here the sy
metry is used to integrate over families of orbitsG. Due to
the rotational symmetry in the disk, one obtains

dosc~v!'A2/p (
orbit G

AGTG

aGAu]u/]Lu
cosS vTG2sG

p

2
2

p

4 D ,

~42!

where TG is the period of the orbit,s5m21 with m the
Maslov index,aG the order of the~possibly! discrete sym-
metry group of the orbit and finallyAG the product of the
plane wave reflection coefficients for scattering at the bou
ary. Finally,]u/]L ~also called the anholonomy matrix!, de-
scribing the negative change of perimeter angle due t
change of impact parameter is

]u

]L
512S np

zp cosup
1

ns

zs cosus
D ,

in agreement with Eq.~38!.

B. Periodic orbit spectrum

Equation~41! gives an explicit connection between pe
odic ray trajectories in the disk and the eigenfrequencies
the system. By taking a Fourier transform ofd(v) one
should be able to recover the periodic ray solutions includ
orbits that change polarization along their path. To suppr
high-frequency oscillations in the signal, we convolute E
1-9
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N. SONDERGAARD AND G. TANNER PHYSICAL REVIEW E66, 066211 ~2002!
~41! on both sides by a Gaussian test function as was
used in Ref.@4#. The smoothing depends on a parameteh
proportional to the width,

w~zp!5
1

hAp
e2(zp /h)2

, zp5kpa. ~43!

Figure 5 shows a comparison between a numerically ca
lated period spectrum obtained from the first 23 000 eig
values of a disk using Eq.~14! and the approximative resu
~41!, here for polyethylene withk53.61. The smooth part o
the spectrum is removed and the density of eigenfrequen
is then Fourier transformed. The thus obtained period sp
trum shows numerous peaks that fall roughly into th
classes: orbits being of pure pressure, pure shear, and m
polarization types. In general, the first class consists of
shortest orbits since the pressure waves have the fastes
locity. At t'3.2 msec, we have an infinite number of pre
sure orbits accumulating at the boundary; orbits of hig
winding number such as the pentagram att'4.9 msec can
also be resolved. Next, orbits with segments of both pres
and shear polarization type arise. Again, one finds accu
lation towards a limit orbit with the pressure segments
coming tangential to the boundary aroundt'5.5 msec. We
note here clear deviations of the actual numerical per
spectrum from periodic orbit theory. Shear waves have in
dence angles close to the critical angle and surface contr
tions become relevant.

We note that periodic orbits changing polarization alo
their paths could clearly be identified here in a Fourier sp
trum of an eigenspectrum of an elastic body. Quite char
teristic is the decay of peak height as the orbits increas
length. Note, however, that the class of pure shear orbits w

FIG. 5. FFT of oscillating level density. The orbits are depict
with thin/~thick! lines for pressure~shear polarization! and are posi-
tioned according to their period. The periodic orbit theory~‘‘p.o.t.’’ !
refers to Eq.~41!. The smoothing parameter in Eq.~43! is chosen
here ash50.2. The actual material corresponds to polyethyle
with cp51950 m/s andcs5540 m/s. Finally, the disk radius isa
51 m.
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long periods show up as comparatively high peaks in
spectrum. This is due to the lack of mode conversion wh
the shear segments turn towards tangential incidence w
reflection coefficient becoming a pure phase~23!. Surface
orbits such as the pure Rayleigh orbit att'12.2 msec can
also be identified.

VI. SUMMARY AND DISCUSSION

We have studied the in-plane eigenfrequency spectrum
the elastic wave equation in two spatial dimensions with c
cular boundaries. It was shown that the eigenmodes ca
expressed in terms of periodic rays of an underlying billia
like classical dynamics. The ray dynamics conserves ang
momentum, the wave equation becomes separable in p
coordinates, accordingly. It was pointed out, however, t
the existence of two wave modes with different velociti
partially destroys the integrability of the problem; the r
dynamics for fixed angular momentum takes place on t
different energy manifolds in phase space for the two po
izations. The dynamics on each manifold is one dimensio
and thus integrable, transitions between the energy shee
the boundary introduce a purely probabilistic compone
The classical dynamics corresponding to the elastic w
equation is therefore not deterministic and thus not in
grable in the sense of Hamiltonian dynamics.

By solving the wave equation explicitly and derivin
high-frequency approximations employing both the scat
ing matrix and the transfer operator, a connection betw
the wave dynamics in the disk for fixed angular moment
and the unitary propagation on a simple quantum gra
could be established. Spectral correlations due to wave m
ing manifest themselves in a gap in the nearest neigh
spacing distribution and thus strong level repulsion. Fina
the full level density was expressed in terms of periodic
bits which could be identified explicitly in the Fourier tran
form of the exact density of eigenstates.

The main corrections omitted in the high-frequency a
proximations derived here occur for nearly tangential orb
both for pressure and shear components. This regime c
for a more refined approximation of the Bessel functio
occurring in the traction matrix~15! as, for example, uniform
approximations. Furthermore, periodic orbits accumulate
the boundary and the stationary phase approximation use
solve the integrals~35! breaks down. These corrections giv
rise to surface waves typical of free boundary conditions

Furthermore, higher-order terms in the reflection coe
cients become important whenever the leading termaps van-
ishes, that is, for normal incidentu→p/2 corresponding to
L→0. Periodic orbits atL50 having bothp ands segments
can indeed identified in the Fourier spectrum Fig. 5. A d
tailed analysis of these effects will be discussed elsewhe
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APPENDIX A: IN-PLANE EIGENFREQUENCY
SPECTRUM FOR AN ELASTIC DISK

Due to the rotational symmetry of the disk, the wa
equation separates in an angular and a radial part. The e
functions regular at the origin may be expressed in term
Bessel functions; one writes the displacement field~2! as

up
l 5“@Jl~kpr !e2 i l w#, us

l 5“3 ẑ@Jl~ksr !e2 i l w#

andp ands refer to pressure and shear polarization, as us
~also called ‘‘primary’’ and ‘‘secondary’’ wave in seismolog
referring to the time of arrival of these waves!. A general
interior eigenfunction can be expanded in these displacem
fields, that is,

ul5a1 up
l 1a2 us

l . ~A1!
-
di-

-

s

on

06621
en-
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To fulfill the free boundary condition, the traction oful has
to vanish at the boundary, that is,

t~ul !5a1 t~up
l !1a2 t~us

l !50. ~A2!

Writing the traction in terms of its radial and angular dire
tion, one obtains

05a1 tr~up
l !1a2 tr~us

l !

05a1 tw~up
l !1a2 tw~us

l !. ~A3!

Expressed as a matrix equation, this becomes

~a1a2!t l50, ~A4!

where we have collected the coordinates of both polar
tions in a matrix
tl5@ tp i
l #5S S l 22

1

2
zs

2D Jl~zp!2zpJl8~zp! i l @Jl~zp!2zpJl
8~zp!#

i l @Jl~zs!2zsJl
8~zs!# zsJl

8~zs!2S l 22
1

2
zs

2D Jl~zs!
D ~A5!
tor
tor

-
e
ns

kel
with i 5r or w andp5p or s and thustp i5t i(up). We set,
as usual,zp5akp with a the radius of the disk. A superpo
sition of these two polarizations fulfills the boundary con
tion only when

det~ t l !50, ~A6!

which is the eigenfrequency condition~14!. For more details
see, for example, Ref.@32#, in which an expression equiva
lent to Eq.~A5! is derived.

APPENDIX B: S MATRIX

1. S matrix in terms of traction operators

Assume a general boundary condition

V~u!50 ~B1!

with u ann-dimensional vector wave function andV a linear
operator. Denoteui the wave field being nonzero in itsi th
component only withi P$1, . . . ,n%. The scattering proces
of an incoming pureiwave,ui

2 , may then be described as

u5ui
21(

j
Si j uj

1 , ~B2!

where uj
1 denotes outgoing pure polarizations. Equati

~B2! must satisfy the boundary condition~B1! for all i. Solv-
ing for the scattering matrix, one obtains

S52V~u2!•@V~u1!#21. ~B3!
The operatorV(u) may be represented in matrix form

@V~ui !# j , ~B4!

where the indexi represents the component of the vec
field u and j denotes the vector component of the opera
V, ~that is, x̂, ŷ or r̂ , ŵ in two dimensions!.

In our caseV(u) is given by the tractiont(u) ~4! in polar
coordinates. The analytic form is obtained from Eq.~A5!
usingHl

(1) ,Hl
(2) instead ofJl .

2. The high-frequency limit vš1 for bpÄ l ÕzpË1

Starting from the Eq.~16!, expressing the scattering ma
trix Sl in terms of traction matrices, we will employ th
oscillatory Debye approximation for the Hankel functio
enteringt6, that is,

Hl
(1)~z!;A 2

pQ
eif, Hl

(2)~z!;A 2

pQ
e2 if,

Hl
(1)8~z!; i

Q

z
Hl

(1)~z! ~B5!

with

Q5Az22 l 2 and f5Q2p/42 l arccos
l

z
. ~B6!

Here,z is eitherzp or zs with zp5akp as usual. The traction
matrices t6 are obtained from Eq.~15! by replacing the
Bessel functions in terms of outgoing and incoming Han
1-11
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functions, respectively. Inserting the Debye approximat
and separatingt in amplitude and phase, we obtain@33#

t65S e6 ifp 0

0 e6 ifs
DG6

•Z6. ~B7!

Here

G65SA 2

pQp

0

0 A 2

pQs

D ~B8!

and

Z15S ~ l 22zs
2/2!2 iQp il ~12 iQp!

i l ~12 iQs! iQs2~ l 22zs
2/2!

D , ~B9!

whereasZ2 has the same form asZ1 apart from replacing
Qp by 2Qp . Hence,
,

cs

06621
n
S5S e2 ifp 0

0 e2 ifs
D aS e2 ifp 0

0 e2 ifs
D ~B10!

with the unitary matrixa defined as

a52G2
•Z2/~G1

•Z1!. ~B11!

A straightforward but tedious expansion ofa in terms of the
wave numberskp , expressingl andQp in terms of the inci-
dence angleup , that is, l 52zp sinup and Qp5zp cosup ,
one obtains indeed the reflection coefficients~6! in leading
order. The limit taken corresponds to lettingkp→` and u l u
→` but keeping their ratio fixed. As discussed above, t
ratio corresponds to fixed impact parameter/incidence an
This finally reproduces formula~19!. All the formulas are
given here for negative angular momentum; choosingl
5zp sinup positive changes the sign of the off-diagon
components in Eq.~15!. This does not alter the eigenfre
quency condition~14! reflecting the degeneracy of the spe
trum with respect to the sign change inl.
dt,

s
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